设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明: ∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].

admin2019-05-14  40

问题 设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:
abf(x)φ(x)dx≥f[∫abxφ(x)dx].

选项

答案因为f"(x)≥0,所以有f(x)≥f(x0)+f’(x0)(x-x0). 取x0=∫abxφ(z)dx,因为φ(x)≥0,所以aφ(z)≤xφ(x)≤bφ(x),又∫abφ(x)dx=1, 于是有a≤∫abxφ(x)dx=x0≤b.把x0=∫abxφ(x)dx代入(x)≥f(x0)+f’(x0)(x-x0)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x0)φ(x)+f’(x0)[xφ(x)-x0φ(x)], 上述不等式两边再在区间[口,6]上积分,得∫abf(z)φ(x)dx≥f[∫ab≥xφ(x)dx].

解析
转载请注明原文地址:https://jikaoti.com/ti/0CoRFFFM
0

最新回复(0)