(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,f(0)=f(1)=0,.试证 (1)存在,使f(η)=η. (2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)=λ[f(ξ)一ξ]=1

admin2018-07-24  27

问题 (1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,f(0)=f(1)=0,.试证
(1)存在,使f(η)=η.
(2)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)=λ[f(ξ)一ξ]=1

选项

答案(1)令φ(x)=f(x)一x,则φ(x)在[0,1]上连续.又φ(1)=一1<0, [*] 由介值定理可知,存在 [*] 使得φ(η)=f(η)一η=0 即 f(η)=η (2)要证f’(ξ)一λ[f(ξ)一ξ]=1,即要证 [f’(ξ)一1]一λ[f(ξ)一ξ]=0 也就是要证 φ’(ξ)一λφ(ξ)=0,因此构造辅助函数 F(x)=e-λxφ(x)=e-λx[f(x)一x] 则F(x)在[0,η]上满足罗尔定理的条件,故存在ξ∈(0,η).使得F’(ξ)=0. 即 e-λξ[φ’(ξ)一λφ(ξ)]=0 而 e-λξ≠0,从而有 φ’(ξ)一λφ(ξ)=0 即 f’(ξ)一λ[f(ξ)一ξ]=1

解析
转载请注明原文地址:https://jikaoti.com/ti/06IRFFFM
0

最新回复(0)