首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2019-08-23
24
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明:方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
4
,所以[*]=n一1,即r(A)=[*]=n一1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n一1,0)
T
,又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
,故方程组AX=b的通解为kξ+η=k(1,2,…n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/03QRFFFM
0
考研数学一
相关试题推荐
计算下列三重积分:其中Ω是由曲线绕z轴旋转一周所成的曲面与平面z=a2所围成的区域。
向量场u(x,y,z)=xy2i+yezj+xln(1+z2)k在点P(1,1,0)处的散度divu=____________。
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明:η*,ξ1,…,ξn—r线性无关。
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
设α1,α2,…,αs均为n维向量,下列结论中不正确的是()
设A、B、C是三个相互独立的随机事件,且0<P(C)<1,则在下列给定的四对事件中不相互独立的是()
已知α1,α2,α3,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Aχ=0的解向量共有()
随机试题
设立综合类的证券公司的注册资本最低限额为()
股骨干中1/3骨折可以选择的内固定方法不包括
过敏性休克的变态反应为哪项
五味的阴阳属性,属于阴的一组是
男,35岁。烧伤总面积70%,Ⅲ度烧伤60%,在外院度过休克期,创面有感染,伤后4天入院,近2天来腹泻、黑粪,以往无溃疡病史。若上消化道出血被证实,为了明确病变位置及范围,选用最佳检查方法是
在一个价格剧烈波动的市场中,最容易出现的形态是()。
第一段[]处恰当的措辞是()。根据原文,得出的以下哪项推论是错误的?()
面对________的现代观念,他们能从现文生活的感受出发,汲取西方艺术的________,积极探索新的艺术语言。填入横线部分最恰当的一项是()。
Asweallknowthatthecommoncoldspreadswidelyinthewholeworld.Themostwidespreadmistakeisthatcoldsarecausedbyco
[A]SetaGoodExampleforYourKids[B]BuildYouKids’WorkSkills[C]PlaceTimeLimitsonLeisureActivities[D]Ta
最新回复
(
0
)