首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
admin
2020-03-15
41
问题
设f(x)在[0,1]上连续可导,f(1)=0,∫
0
1
xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
选项
答案
由分部积分,得∫
0
1
xf’(x)dx=xf(x)|
0
1
-∫
0
1
f(x)dx=∫
0
1
f(x)dx=2,于是∫
0
1
f(x)dx=一2.由拉格朗日中值定理,得f(x)=f(x)-f(1)=f’(η)(x一1),其中η∈(x,1),f(x)=f’(η)(x一1)两边对x从0到1积分,得∫
0
1
f(x)dx=∫
0
1
f’(η)(x一1)dx=一2.因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上取到最小值m和最大值M,由M(x一1)≤f’(η)(x-1)≤m(x—1)两边对x从0到1积分,得[*]即m≤4≤M,由介值定理,存在ξ∈[0,1],使得f’(ξ)=4.
解析
转载请注明原文地址:https://jikaoti.com/ti/01iRFFFM
0
考研数学三
相关试题推荐
微分方程y'+y=e-xcosx满足条件y(0)=0的特解为_________。
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设三阶矩阵A的特征值λ1=l,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
设f(x)=|sint|dt,证明f(x)是以π为周期的周期函数;
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
设随机变量X与Y相互独立,且都服从[0,1]上的均匀分布,试求:V=IX一Yl的概率密度fV(v)。
由曲线y=1一(x一1)2及直线y=0围成的图形(如图1—3—1所示)绕y轴旋转一周而成的立体体积V是()
(I)求函数所满足的二阶常系数线性微分方程;(Ⅱ)求(I)中幂级数的和函数y(x)的表达式.
求下列一阶常系数线性差分方程的通解:yt+1-2yt=2t;
求下列一阶常系数线性差分方程的通解:4yt+1+16yt=20;
随机试题
聚合物驱注入井在注聚合物后,注入井有注入压力()、注入能力下降的反映。
Universitiesgenerally______theirstudentsfromamongthehighschoolgraduates.
肝昏迷患者神志清楚后蛋白质可从每日20g逐步增加至0.8~1.0g/(kg.d),以动物蛋白为最好。()
A.风寒咳嗽B.风热咳嗽C.寒痰咳嗽D.热痰咳嗽E.上实下虚的咳喘证止嗽散主治的病证是()。
下列关于房产税纳税人的说法中,正确的是()。
申请个人经营贷款时,负责在调查人提供的调查资料基础上,对贷款业务的合规性审查的是银行的()
[*]
下面表达式中,运算结果为12的是:
有三个关系R、S和T如下:其中关系T由关系R和S通过某种操作得到,该操作为
Choosethecorrectletter,A,BorC.Therestaurantisfamousfor
最新回复
(
0
)